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Abstract—The exploration and exploitation of ocean resources
are labor-intensive and dangerous for human beings. The adop-
tion of autonomous robots provides an efficient and safer solution.
However, a single underwater robot has limited energy and
communication capability which restrict its operating duration
and mission range. The underwater cyber-physical system using
swarm robotics is highly desirable where robots move coopera-
tively to accomplish tasks that cannot be done by any individual.
In this paper, an autonomous mobile wireless charger is proposed
to be used in order to recharge mobile robots to overcome
the energy limitation and further extend the mission duration.
First, the feasibility of underwater wireless energy transfer is
proved and its achievable efficiency is obtained. Then, a model
is developed to reveal the interplay among the communication,
the wireless energy transfer, and the optimal motion control. Our
results show that the trajectory tracking can significantly affect
wireless energy transfer efficiency. Furthermore, the optimal
trajectory for the mobile charger depends on the swarm size
and dynamics.

Index Terms—Robotic networks, swarm robotics, underwater,
wireless communication, wireless energy transfer.

I. INTRODUCTION

Underwater cyber-physical systems consisting of a swarm
of mobile Autonomous Underwater Vehicles (AUVs) have a
large number of civilian and military applications. AUVs are
networked by using wireless underwater communications and
they have the capabilities of computing, sensing, locomotion,
and object detection [1]. Different from the remotely operated
underwater vehicles which use umbilical cables to provide
power and data communication, AUVs are fully autonomous
and they do not require external power supplies or human
intervention. Due to their limited battery energy, AUVs have
a very limited operating range and mission duration which
cannot provide persistent sensing or target tracking.

In this paper, we propose to use a mobile charger to wire-
lessly recharge mobile AUVs which aims to enable sustainable
underwater cyber-physical systems with unlimited operating
range and mission duration. The Wireless Energy Transfer
(WET) leverages magnetic induction which has a small prop-
agation loss in underwater due to its long wavelengths [1].
We consider AUVs are mission-driven and they cannot stop
or return to be recharged. Their trajectories are determined
by swarm dynamics such as wireless network connectivity,
obstacles, and many other factors. AUVs can cooperate with
each other to find optimal trajectories. This paper focuses on
the interactions between AUVs and the mobile charger, and
we develop an optimal trajectory for the mobile charger to
maximize the WET efficiency. An illustration of the proposed
system is shown in Fig. 1. AUVs send their location infor-
mation to the mobile charger upon which the mobile charger

AUV path
AUV

Mobile charger

Water

Air

AUV 1 pathAUV 1

Mobile charger

Water

Air

AUV 2

AUV 2 path

Fig. 1. Illustration of underwater mobile charging. A mobile charger is
charging two mobile AUVs simultaneously.

estimates AUVs motion trajectory and plans its own motion
to achieve high WET efficiency.

However, the trajectory design is not trivial due to the
following challenges. First, existing underwater localization
algorithms are not perfect and thus the locations of AUVs are
not accurate, which may provide misleading information for
the mobile charger. Second, the mobile charger has to move
along an optimal trajectory to maximize WET efficiency while
avoiding collisions, which is different from static WET. Third,
when there are multiple AUVs, the mobile charger has to
consider WET efficiency and fairness jointly. Currently, in the
literature, there is no effort to address the above challenges
for underwater cyber-physical systems.

In this paper, we consider the effect of localization error
on mobile WET. The mobile charger does not have perfect
location information of AUVs which is a common problem
in harsh underwater environments. The mobile charger uses a
Kalman Filter to track and predict the locations of AUVs upon
which it plans its trajectory. We first review the characteristics
of the underwater WET channel by considering the surface
lateral waves. Then, we study the interactions between a
single AUV and the mobile charger to obtain the optimal
trajectory for the mobile charger and prove the feasibility.
After that, we develop the mobile WET for multiples AUVs
by considering fairness, energy consumption, and battery level.
The developed solution is a nonconvex problem and we obtain
an approximation of the solution. Also, we show the optimal
mobile charger’s trajectory highly depends on the distance
between AUVs. The proposed approach is evaluated using
numerical simulations.

II. MOBILE CHARGER TRAJECTORY PLANNING

In this section, we introduce the AUV location and motion
model. Then, we present the WET channel model. After that,
we study the optimal trajectory of the mobile charger for
recharging a single AUV and multiple AUVs.



Let the accurate location of an AUV be xr(ti) ∈ R3, for
i = 0, 1, · · · , where t0 is the starting time, and ∆t = ti+1− ti
which is the time interval. The AUV’s motion is governed by

sr(ti) = Asr(ti−1) + w(ti−1), (1)

where sr(ti)
T = [xr(ti),v

r(ti)]
T , vr(ti) ∈ R3 is the velocity

of the AUV in the 3D space, A ∈ R6×6 is the transition matrix
which relates the AUV’s current state with the next state,
and w(ti) ∼ N (0,Q) is Gaussian noises with covariance
matrix Q. Due to the underwater localization errors, the AUV
considers its location as

yr(ti) = Hsr(ti) + v(ti), (2)

where H ∈ R3×6 relates the state to the measurement,
and v(ti) ∼ N (0,R) is the measurement Gaussian noises
with covariance matrix R. Once the connection between the
mobile charger and an AUV is built, the AUV sends yr(ti)
to the mobile charger every ∆t. Assume that the wireless
communication is reliable and there is no error, the mobile
charger receives yr(ti) upon which it plans its trajectory to
improve WET efficiency.

A. Underwater Wireless Energy Transfer
Underwater WET using magnetic induction has been widely

implemented and tested [2], [3]. The US Department of Energy
has identified underwater WET as an important technology for
marine energy [3]. In existing underwater WET, AUVs have to
return to a charging station or to be docked on top of a mobile
charger; the relative positions of the mobile charger and AUVs
are static. This paper considers a radically different scenario
where AUVs’ are not interrupted by WET, except for sending
their location and battery information, and the mobile charger
plans its trajectory to optimally charge AUVs.

It was shown in [4], [5] that the effect of orientation loss of
magnetic induction can be overcome by using tri-axis coils.
Also, the received power can be increased by at most 5 dB by
using channel state information [5]. However, it is challenging
to perform channel estimation for AUVs due to their mobility.
Hence, in this paper we use tri-axis coils without channel state
information for WET. The received power can be written as
[4], [5]

P̃r(xr,xm) =
ω2Λ2
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where Λ1 = µ2πa
4N2

c , µ2 is water permeability, a is coil
radius, Nc is the coil number of turns, rc is the coil resistance,
dr is the depth of the AUV, dm is the depth of the mobile
charger, Pt is the transmission power, r = ‖xr −xm‖2, k1 is
the propagation constant of the air, and kim2 = =(k2) which
is the imaginary part of the propagation constant of water k2.
Note that, the above equation assumes the mobile charger and
the AUV are separated by a certain distance to avoid collisions
and the strong coupling effect is neglected. However, when
their distance is small, this model can give infinitely large
received power due to its singularity. To reduce it effect, we
employ a modified received power which is Pr(xr,xm) =
0.5P̃r(xr,xm)Pt/[0.5Pt + P̃r(xr,xm)]. In this way, when
the distance is small, the efficiency cannot be higher than 50%
which is considered as the highest efficiency.

B. Single AUV

First, we study the WET for a single AUV to understand
the fundamental challenges. The mobile charger maintains an
estimator of the AUV’s location by using the Kalman Filter
[6]. Once the mobile charger receives yr(ti), it uses Kalman
Filter to estimate current location x̂r(ti) and predict x̂r(ti+1).
To plan the mobile charger’s trajectory, we divide the time slot
between ti and ti+1 into nt subslots with tji = j(ti+1−ti)/nt,
for j = 0, 1, · · · , nt−1, and consider its velocity in each time
slot as a constant. This approach has been widely adopted
in terrestrial robot trajectory planning [7]. As a result, the
predicted AUV’s velocity is v̂t(ti) and location is x̂r(ti) +
tji v̂

t(ti), for j = 1, · · · , nt.
Note that dP̃r(x

r,xm)
dr < 0 which indicates that the received

power is monotonically decrease as the distance increases
and the distance should be as small as possible to increase
the received power. Assume the minimum required distance
between the mobile charger and an AUV is rmin to avoid
collisions. Then, the optimal trajectory for the mobile charger
is to keep rmin away from the AUV and there are infinite
solutions. To simply the motion of the mobile charger, we
consider it follows the AUV with the trajectory x̂r(ti) +
tji v̂

t(ti)− rminv̂
t(ti)/‖v̂t(ti)‖2, for j = 1, · · · , nt.

C. Multiple AUVs

Next, we consider a swarm of AUVs with locations
xr
1(ti), · · · ,xr

nrb
(ti), velocities vr

1(ti), · · · ,vr
nrb

(ti), and bat-
tery levels b1(ti), · · · , bnrb

(ti), where nrb is the number of
AUVs in the swarm. AUVs’ energy consumption model is
complicated because it consists of various aspects, including
locomotion, communication, computation and sensing. Hence,
AUVs’ energy consumption is hard to predict since it depends
on the specific application and underwater dynamics. In this
paper, we use a linear model to approximate the energy
consumption, i.e., Ec(ti+1, ti) = he(ti+1 − ti), where he is
the energy consumption rate and it varies depending on the
specific application. Thus, the battery level change of the lth
AUV during one time slot is

bl(ti+1) = bl(ti) + ∆t

 1

nt

nt∑
j=1

P j
r (xr

l (tji ),x
m(tji ))− he

 ,
(4)

where P j
r (xr

l (tji ),x
m(tji )) is the lth AUV received power at

time tji . We implicitly assume that the received power in a
subslot is a constant.

To design sustainable underwater cyber-physical systems,
the mobile charger seeks to maximize the battery levels of
AUVs which is equivalent to maximizing the received power.
In this paper, we consider the following two key problems.
First, the AUV with the minimum battery level should be
charged first to maintain the AUV’s normal function. In this
case, the mobile charger has to pay attention to a single
AUV, which may sacrifice the swarm’s overall received power.
Second, if the AUVs have similar battery levels, the mobile
charger has to consider the overall charging efficiency of the
swarm. Thus, there is a tradeoff between the individual’s
benefit and the swarm’s benefit. With this in mind, given



each AUV’s predicted location xr
l (tji ), we have the following

problem:

(P1) : max
xm(tji )

nt∑
j=1

αj +
β
∑nrb

l=1 bl(ti+1)

nrbbmax
(5a)

s.t. bl(t
j
i )/bmax ≥ αj , l = 1, · · · , nrb, j = 1, · · · , nt; (5b)

‖xm(tji )− xr
l (tji )‖2 ≥ rmin, l = 1, · · · , nrb, j = 1, · · · , nt;

(5c)

where bmax is the maximum battery level. In (5a), α is
used to improve the minimum battery level to ensure fairness
of wireless charging. When the battery level of an AUV is
extremely low, α is a small number which can create a large
penalty. The second term in (5a) is used to improve the overall
received power of the swarm when AUVs have similar battery
levels. Without the second term, the mobile charger may keep
moving around to charge the AUV with a minimum battery
level which can significantly reduce its efficiency. The battery
level can be found by using (4). Equation (5c) is used to ensure
that the minimum distance between the mobile charger and an
AUV is larger than rmin.

The above problem cannot be solved efficiently since it is
nonconvex. Next, we reformulate the problem based on the
following two observations. First, WET efficiency decreases
fast as the distance increases. Only if the AUV is close to the
mobile charger, it can receive significant power. Thus, when
the distance between two AUVs is large, the mobile charger
may choose to charge one AUV to maximize the overall re-
ceived power. This will be evaluated in the numerical analysis.
Second, the received power is a monotonically decreasing
function of the distance between the AUV and the mobile
charger. Therefore, to increase the received power, we need
to reduce the distance. Based on the above observations, we
formulate a new problem which is

(P2) : min
xm(tji )

nt∑
j=1

αj (6a)

s.t.
bmax

bl(ti)
‖xm(tji )− xr

l (tji )‖2 ≤ α
j ; (6b)

‖xm(tji )− xr
l (tji )‖2 ≥ rmin, (6c)

l = 1, 2, · · · , nrb, j = 1, 2, · · · , nt.

The problem aims to reduce the distance between the mobile
charger and AUVs to increase the received power. Also, we
consider fairness by using bmax

bl(ti)
, i.e., if an AUV’s battery level

is low, the mobile charger moves towards it. Note that, the
constraints in (6c) are nonconvex. To relax this constraint by
using convex functions, we adopt the approach in [8]. Then,
(6c) can be approximated by

[xm(tj−1
i )− xr

l (tji )]
T [xm(tji )− xr

l (tji )]

≥ rmin‖xm(tj−1
i )− xr

l (tji )‖2. (7)

The approximation is based on the observations that if at time
ti there are no collisions and the constraint (5c) is satisfied,
we can divide the space by using a plane formed by xm(tj−1

i )
and xr

l (tji ). The mobile charger is allowed to move in the half
space without the AUV at time ti+1. Now, the problem (P2)
has been approximated by using convex functions and it can
be solved efficiently to obtain the optimal trajectory of the
mobile charger.

TABLE I
SIMULATION PARAMETERS.

Symbol Value Symbol Value Symbol Value

a 0.1 m Nc 10 rc 0.176 Ω

∆t 1 s Pt 100 W he 2.368 J/s
bmax 34 kJ nt 5 rmin 0.5 m
fc 1 MHz xm(t0) [0;-1;-0.75] Niter 20
εw 81ε1 µ2 µ1 σ 0.05 S/m

Fig. 2. An example of trajectory tracking using the Kalman filter. The
observations are used to estimate the real location of an AUV and predict
its motion.

Although the mobile charger can navigate to reduce its
distance to AUVs to improve WET efficiency, it may fail in a
special case where AUVs are far from each other with similar
battery levels. By solving P2, the mobile charger will navigate
to the center of the swarm, but the distance to AUVs are
large. As we have discussed, if the distance is large, the WET
efficiency is extremely small. In this case, it is more efficient
to follow one AUV instead of trying to charge multiple AUVs
simultaneously which is considered by the second term in (5a).
To address this issue, the mobile charger evaluates its distances
to AUVs at ti and obtains the minimum distance dmin and
the maximum distance dmax. Next, if all the AUVs have
sufficient energy, i.e., the minimum battery level is larger than
a threshold, the battery level of the AUV with the minimum
distance is scaled by rmin/dmin, otherwise, the bl of the AUV
with the minimum battery level is scaled by rmin/dmin. In this
way, if dmin is close to rmin, the mobile charger can charge
multiple AUVs simultaneously, whereas if dmin is much larger
than rmin and some AUVs do not have sufficient energy, the
mobile charger will move towards the one with the lowest
battery level and stay close to it.

III. NUMERICAL ANALYSIS

In this section, we numerically analyze the wireless charging
performance. The simulation parameters are given in Table I.
For the AUV motion model, we consider its velocity is a
constant [1, 1, 0]T . Thus, A is a diagonal matrix except for
the fourth element in the first row and the fifth element in
the second row being ∆t. Q and R are diagonal matrices
with diagonal elements 0.01. An example of the trajectory
tracking is shown in Fig. 2. The initial location of the AUV is
[0,−0.5,−0.5]. As we can see, the estimated location is more
smooth than the observed location and it is close to the real
location of the AUV which can be used to plan the mobile
charger’s trajectory.

Since the mobile charger’s trajectory planning is based
on the predicted AUV locations, ∆t significantly affects the
prediction accuracy. If ∆t is large, the mobile charger may lose
track of the AUV and the WET efficiency becomes extremely
low. However, a small ∆t incurs large communication over-
head. In Fig. 3, we show the tradeoff between communication
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Fig. 3. Effect of the location updating interval ∆t on the AUV received
power.
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Fig. 4. Received power tradeoff between two AUVs. The mobile charger is
located on the line that connects the two AUVs.

overhead and WET efficiency. We consider a mobile charger
to follow an AUV based on the predicted location. When ∆t is
1 s, the AUV’s received power is high and stable, whereas as it
increases, the received power decreases and becomes unstable
due to the low accuracy of the location prediction. Since the
∆h is 2.368 J/s, the battery level can be increased if the
received power is higher than this. We can further improve the
WET efficiency by using larger coils and higher transmission
power.

When there are multiple AUVs, there is a tradeoff among
the charging efficiency for different AUVs. Here, by using two
AUVs, we show the effect of this tradeoff. We consider the
mobile charger is on the line that connects the two AUVs,
and its location can be any point on the line provided that it
satisfies (5c). Here, we consider the AUVs to be static. The
distance between the two AUVs is 1.5 m and 3 m. As shown in
Fig. 4, when they are close, both of them receive reasonable
power, whereas when they are far away, if AUV 2 receives
a large power, then AUV 1 receives negligible power. Thus,
when the distance between AUVs is small, the mobile charger
can simultaneously charge multiple AUVs. On the contrary,
if the distance is large, it is better for the mobile charger to
charge only one AUV and stay close to it to improve the
overall WET efficiency.

Next, we consider there are two AUVs in a swarm for better
exposition. The two AUVs have the same initial battery level
which is 0.5bmax. We first generate the trajectory of AUV
1, then we shift the location by [0,−ys, 0] to generate the
trajectory of AUV 2, where ys =1.5 m for the first 10s and
ys = 6 m for the second 10s. As we can see from Fig. 5,
the mobile charger is in the middle of the two AUVs when
they are close, whereas it moves close to AUV 2 when their
distance is large. In the second 10s, it is not efficient for the
mobile charger to stay in the middle since this significantly
reduces the charging efficiency. The received power during
this period is shown in Fig. 6. When AUVs are close, both

Fig. 5. Mobile charger’s trajectory for charging two AUVs with the same
initial battery level. For the first 10 seconds, the two AUVs are separated by
1.5 m. For the second 10 seconds, the AUVs are separated by 6 m.
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Fig. 6. Received power of AUVs associated with the trajectories shown in
Fig. 5.

of them receive high power. When they are widely separated,
one receives much more power than the other one.

IV. CONCLUSION

In this paper, we study the problem of underwater mobile
wireless charging for swarm robotics. We develop trajectory
planning algorithms for charging a single AUV and multiple
AUVs in a swarm. We find that the mobile charger needs
to stay close to AUVs when the swarm is compact, whereas
it has to chase a single AUV when the swarm is scattered.
Our solution is based on the direct relationship between the
received power and distance. In our future work, we will
consider the optimal signal transmissions by using tri-axis
coils when AUVs are moving to further improve the wireless
energy transfer efficiency and develop efficient solutions to
maximize the overall received power of a swarm.
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